REMARKS ON DISASSEMBLING AND REASSEMBLING THE MOVEMENT

HOW TO REMOVE THE SETTING STEM BEFORE DISMANTLING THE MOVEMENT

Crown position: 0 position

Push the SETTING LEVER gently (refer to the picture on the right) in order to disengage it from the SETTING STEM. Then pull out the crown with stem completely.

SETTING MECHANISM

- YOKE (64)
- SETTING LEVER (65)
- SETTING LEVER JUMPER (63)
- CALENDAR CORRECTOR 1ST INTERMEDIATE WHEEL (68)
- WINDING PINION (69)
- CLUTCH WHEEL (70)
BALANCE AND ESCAPEMENT

How to disassemble/reassemble the BALANCE and BALANCE COCK

- Disassembling

1) Rotate the STUD SUPPORT until it touches to the BALANCE COCK. When doing so, make sure that the second bend of the balance-spring does not touch the REGULATOR PIN.

2) Push out the stud parallel to the slit of the STUD SUPPORT (the direction also shown by the red arrow in the illustration) in order to remove it from the STUD SUPPORT.

3) Unscrew the BALANCE COCK SCREW and remove the BALANCE COCK WITH REGULATOR.

4) Remove the BALANCE COMPLETE WITH STUD.
• Reassembling

1) Install the BALANCE COMPLETE WITH STUD to the MAIN PLATE.

2) Set the BALANCE COCK WITH REGURATOR and tighten the BALANCE COCK SCREW.

3) Temporarily set the stud to the STUD SUPPORT.
 Do not engage the balance-spring to the REGULATOR PIN. The balance-spring passes outside of the REGULATOR-PIN at this stage.

4) Push back the stud parallel to the slit of the STUD SUPPORT.

5) Engage the balance-spring with the slit of the REGULATOR PIN.

* When assembling the BALANCE COMPLETE, pay great attention not to deform the balance-spring, especially at the second bend.
HOW TO REASSEMBLE THE CALENDAR AND POWER RESERVE INDICATOR UNIT

Lubricate the below points on the CALENDAR TRAIN PLATE (a-k)

- **a)** Lower pivot hole of the POWER RESERVE INDICATOR WHEEL.
- **b)** Lower pivot hole of the INTERMEDIATE POWER RESERVE INDICATOR WHEEL.
- **c)** Connecting part with the BARREL PINION.
- **d)** Lower shaft of the DAY driving wheel (2 points.)
- **e)** Lower pivot hole of the INTERMEDIATE DAY DRIVING WHEEL.
- **f)** Lower pivot hole of the DAY RESET LEVER.
- **g)** Lower pivot hole of the DAY INDICATOR WHEEL.
- **h)** Lower pivot hole of the CALENDAR SETTING WHEEL UNIT.
- **i)** Shaft of the DATE DRIVING WHEEL.
- **j)** Lower pivot hole of the INTERMEDIATE DATE DRIVING WHEEL.
- **k)** Lower pivot hole of the DATE RESET LEVER.
- **l)** Lower pivot hole of the DATE INDICATOR WHEEL.

Reassembling order of the 19 parts for the Calendar and Power Reserve Indicator mechanism

1. DATE DRIVING WHEEL
2. DAY DRIVING WHEEL
3. INTERMEDIATE DAY DRIVING WHEEL
4. DAY JUMPER
5. DAY INDICATOR WHEEL
6. DAY RESET LEVER
7. CALENDAR SETTING WHEEL UNIT
8. DATE SETTING WHEEL
9. INTERMEDIATE DATE DRIVING WHEEL
10. DATE JUMPER
11. DATE INDICATOR WHEEL
12 DATE RESET LEVER
13. LOWER WHEEL FOR SUN AND PLANETARY WHEEL
14. SUN AND PLANETARY WHEEL UNIT
15. UPPER WHEEL FOR SUN AND PLANETARY WHEEL
16. INTERMEDIATE WHEEL FOR SUN AND PLANETARY WHEEL
17. BARREL PINION
18. INTERMEDIATE POWER RESERVE INDICATOR WHEEL
19. POWER RESERVE INDICATOR WHEEL
Reassemble the Day indicator train wheels.

1. Reassemble the DATE DRIVING WHEEL.

2. Reassemble the DAY DRIVING WHEEL.
 * Make sure that the nick of the DAY DRIVING WHEEL and lower pivot hole for the INTERMEDIATE DAY DRIVING WHEEL, and the DATE DRIVING WHEEL and the lower pivot hole for the INTERMEDIATE DATE DRIVING WHEEL on the CALENDAR TRAIN PLATE are aligned at same time as per the left image.

3. Reassemble the INTERMEDIATE DAY DRIVING WHEEL and mesh it to the DAY DRIVING WHEEL.

4. Reassemble the DAY JUMPER.
 * Make sure that the DAY JUMPER is correctly engaged with the INTERMEDIATE DAY DRIVING WHEEL as per the left image.

5. Reassemble the DAY INDICATOR WHEEL.

6. Reassemble the DAY RESET LEVER.
 * Make sure that the DAY RESET LEVER is correctly engaged with the cam of the INTERMEDIATE DAY DRIVING WHEEL as per the left image.

 Turn the DAY INDICATOR WHEEL 3 teeth clockwise, and wind its hair spring to press the DAY RESET LEVER and the DAY INDICATOR WHEEL in the correct position.

7. Reassemble the Date indicator train wheels.

8. Reassemble the DATE SETTING WHEEL UNIT.
9. Reassemble the INTERMEDIATE DATE DRIVING WHEEL and mesh it with the DATE SETTING WHEEL.

10. Reassemble the DATE JUMPER.
* Make sure that the DATE JUMPER is correctly engaged with the INTERMEDIATE DATE DRIVING WHEEL as per the left image.

11. Reassemble the DATE WHEEL.

12. Reassemble the DATE RESET LEVER.
* Make sure that the DATE RESET LEVER is correctly engaged with the cam of the INTERMEDIATE DATE DRIVING WHEEL as per the left image.

Turn the DATE INDICATOR WHEEL 3 teeth clockwise and wind its hair spring to press the DATE RESET LEVER and the DATE INDICATOR WHEEL in the correct position.

* Recheck that the DAY DRIVING WHEEL and the INTERMEDIATE DAY DRIVING WHEEL, and the DATE DRIVING WHEEL and the INTERMEDIATE DATE DRIVING WHEEL are correctly aligned with the nick of the DAY DRIVING WHEEL and DATE DRIVING WHEEL as per the left image, after securing both DAY and DATE JUMPERS.

If it is not correct, please disassemble the parts of the calendar train wheels and reassemble them correctly.
HOW TO REASSEMBLE THE CALENDAR AND POWER RESERVE INDICATOR UNIT

1. Reassemble the LOWER WHEEL FOR SUN AND PLANETARY WHEEL UNIT.

2. Lubricate the LOWER WHEEL FOR SUN AND PLANETARY WHEEL UNIT as per illustrated.

 Type of oil: S-6

3. Mount the SUN AND PLANETARY WHEEL UNIT.

4. Lubricate the SUN AND PLANETARY WHEEL UNIT as illustrated.

 Type of oil: AO-3

5. Mount the UPPER WHEEL FOR SUN AND PLANETARY WHEEL UNIT.

6. Lubricate the shaft of the POWER RESERVE INDICATOR WHEEL as illustrated.

 Type of oil: S-6

1. Reassemble and lubricate the INTERMEDIATE WHEEL FOR SUN AND PLANETARY WHEEL as illustrated.

 Type of oil: S-6

2. Reassemble the BARREL PINION.

3. Lubricate the pinion of the BARREL PINION.

 Type of oil: S-6

4. Reassemble the INTERMEDIATE POWER RESERVE INDICATOR WHEEL.

5. Reassemble the POWER RESERVE INDICATOR WHEEL.

6. Lubricate the shaft of the POWER RESERVE INDICATOR WHEEL as illustrated.

 Type of oil: S-6
Lubricate the Calendar and Power Reserve Indicator function parts. (a-o)

* For a), b), c), e), f), g), h), i), j), k), l), please lubricate the contact point between the CALENDAR TRAIN BRIDGE and each train wheel.

a) Upper pivot of the POWER RESERVE INDICATOR WHEEL.
 Type of oil: S-6

b) Upper pivot of the INTERMEDIATE POWER RESERVE INDICATOR WHEEL.
 Type of oil: S-6

c) Upper pivot of the LOWER WHEEL FOR SUN AND PLANETARY WHEEL.
 Type of oil: S-6

d) Upper pivot of the BARREL PINION.
 Type of oil: S-6

e) Upper pivot of the INTERMEDIATE WHEEL FOR SUN AND PLANETARY WHEEL.
 Type of oil: S-6

f) Upper pivot of the INTERMEDIATE DAY DRIVING WHEEL.
 Type of oil: S-6

g) Upper pivot of the DAY RESET LEVER.
 Type of oil: S-6

h) Upper pivot of the DAY INDICATOR WHEEL (refer to the left * image for detailed lubricate part).
 Type of oil: S-6

i) Upper pivot of the CALENDAR SETTING WHEEL.
 Type of oil: S-6

j) Upper pivot of the INTERMEDIATE DATE DRIVING WHEEL.
 Type of oil: S-6

k) Upper pivot of the DATE RESET LEVER.
 Type of oil: S-6

l) Upper pivot of the DATE INDICATOR WHEEL. (refer to the left * image for detailed lubricate part).
 Type of oil: S-6

m) Contact point between cam of the INTERMEDIATE DAY DRIVING WHEEL and DAY RESET LEVER.
 Type of oil: S-6

n) Shaft of the DATE SETTING WHEEL.
 Type of oil: AO-3

o) Contact point between cam of the INTERMEDIATE DATE DRIVING WHEEL and DATE RESET LEVER.
 Type of oil: AO-3
Reassembling of the CALENDAR TRAIN BRIDGE

1. Reassemble the CALENDAR TRAIN PLATE.

* Recheck if the DAY/DATE JUMPERS are correctly engaged with the INTERMEDIATE DAY/DATE DRIVING WHEELS before reassembling the plate.

2. Tighten the CALENDAR TRAIN BRIDGE SCREWS (4 pcs.)

3. Lubricate the contact point between DAY JUMPER and INTERMEDIATE DAY DRIVING WHEEL through the hole on the CALENDAR TRAIN BRIDGE.

4. Lubricate the connecting part between DATE JUMPER and INTERMEDIATE DATE DRIVING WHEEL through the hole on the CALENDAR TRAIN BRIDGE.

Function checking for the CALENDAR and POWER RESERVE INDICATOR mechanism

1. Check the day/date setting function.

a) Pull out the crown to the 1st click.

b) Turn the crown clockwise and check through a hole on the CALENDAR TRAIN BRIDGE if the DAY JUMPER moves.

c) Check if the hair spring of DAY INDICATOR WHEEL has been wound, in order to check the setting position of the DAY RESET LEVER (refer to the left image).

d) Turn the crown counter-clockwise and check through a hole on the CALENDAR TRAIN BRIDGE if the DATE JUMPER moves.

e) Check if the hair spring of DATE INDICATOR WHEEL has been wound, in order to check the setting position of the DATE RESET LEVER (refer to the left image).

f) Check if the hair spring of DATE INDICATOR WHEEL has been wound, in order to check the setting position of the DATE RESET LEVER (refer to the left image).

g) Wind the crown clockwise until the arm of INTERMEDIATE POWER RESERVE INDICATOR WHEEL contacts the pin on the CALENDAR TRAIN PLATE as per the illustration.
HOW TO REASSEMBLE THE HANDS AND DIALS

PREPARATION FOR DAY AND DATE INDICATOR HANDS REASSEMBLING

1. Pull out the crown to the 2nd click.
2. Turn the crown clockwise, and check if the DAY/DATE LEVERS and the finger of the DAY/DATE DRIVING WHEELs are aligned as the illustration at the same time, through the holes of the CALENDAR TRAIN BRIDGE.

* If the DAY / DATE DRIVING WHEELs are not correctly aligned, the movement should be disassembled and should be reassembled properly (refet to page 4).

ASSEMBLING OF THE DIAL

1. Set the dial to the movement and turn the movement over.
2. Turn the dial locking pin to hold the dial feet(at two points).
HOW TO REASSEMBLE THE HANDS AND DIALS

<table>
<thead>
<tr>
<th>POWER RESERVE INDICATOR HAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fully wind the mainspring.</td>
</tr>
<tr>
<td>2. Install the POWER RESERVE INDICATOR HAND with pointing its tip to the full position of the power reserve indication on the dial as per the left image.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE INDICATOR HAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install DATE INDICATOR HAND with pointing its tip to the "1st" of the date indication on the dial as per the left image.</td>
</tr>
<tr>
<td>* Please replace the hand with new one, as its hole becomes loosened once it is disassembled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAY INDICATOR HAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install the DAY INDICATOR HAND with pointing its tip to the "MON" of the day indication on the dial as per the left image.</td>
</tr>
<tr>
<td>* Please replace the hand with new one, as its hole becomes loosened once it is disassembled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR/MINUTE/SECOND HANDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install the hour / minute / second hands.</td>
</tr>
</tbody>
</table>
1. Take off the WINDING STEM (refer to Page 13/28).
2. Set the movement with dial to the case.
3. Set the case ring.
4. Set the WINDING STEM to the crown.
5. Set the CASING CLAMP and screw it with the CASING. CLAMP SCREWS (2 pcs.) as the right illustration.
* Do not assemble up side down as it has the top side and back side.
HOW TO REASSEMBLE OSCILLATING WEIGHT

1 OSCILLATING WEIGHT
When fixing the OSCILLATING WEIGHT, an alignment with the FIRST REDUCTION WHEEL is necessary in order to wind the MAINSPRING most efficiently.

Rotate the FIRST REDUCTION WHEEL manually until its hole aligns with the gilt dot on the BALANCE COCK and set the OSCILLATING WEIGHT vertically at the stem side, and then tighten the screw. Refer to the figure below.
REGULATION

Names of the parts for regulation and their functions

1. [STUD SUPPORT]
 Correction of the beat error by positioning the roller jewel correctly

2. [REGULATOR]
 Regulation of the accuracy rate (+) or (-) by adjusting the operative length of the balance-spring

3. [STUD (glued at the balance-spring)]
 Alignment of the balance-spring to the center of the regulator pin's slit

4. [REGULATOR PIN]
 Adjustment of the play of the balance-spring embraced in its slit

How to regulate the isochronism fault by adjusting the position of the balance-spring

This caliber has the Etachron system for fine regulation of the isochronism fault, which is the same design used for both Cal. 7S-B series.

When an amplitude of the balance becomes weak, the watch shows time loss, in general.

By making a clearance of the balance-spring smaller, the decline curve of the instantaneous rate gets shallower.

1) Make sure that the REGULATOR PIN is aligned in a vertical position to the REGULATOR and the balance-spring passes parallel through the slot of the REGULATOR PIN before fine-tuning the STUD and the REGULATOR PIN.

REGULATOR PIN

top side view back side view angled view
2) Rotate the STUD in order to align the position of the balance-spring passes through the center of the slot of the REGULATOR PIN.

3) Rotate the REGULATOR PIN counterclockwise in order to fine-tune the clearance of the balance-spring passing through the slot of it.
Function check

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function</th>
<th>Checkpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull out the crown to the 2nd click and push it back in to the normal position. Repeat the same several times.</td>
<td>Setting mechanism switching the function of the time setting.</td>
<td>Make sure that it has a click at each position and the stem is not pulled off.</td>
</tr>
<tr>
<td>Turn the crown clockwise at the 0 click.</td>
<td>Hand winding function.</td>
<td>Make sure that the mainspring can be wound by turning the crown clockwise, and power reserve indicator shows properly.</td>
</tr>
<tr>
<td>Pull out the crown to the 1st click, then turn it clockwise.</td>
<td>Calendar mechanism - correcting the day.</td>
<td>Make sure that the day changes smoothly.</td>
</tr>
<tr>
<td>Pull out the crown to the 1st click, then turn it counterclockwise.</td>
<td>Calendar mechanism - correcting the date.</td>
<td>Make sure that the date changes smoothly.</td>
</tr>
<tr>
<td>Pull out the crown to the 2nd click, then turn it.</td>
<td>Second hand stop function.</td>
<td>Make sure that the second hand stops when the crown is pulled out to the 2nd click.</td>
</tr>
<tr>
<td></td>
<td>Setting mechanism - hour and minute hand setting.</td>
<td>Make sure that the hour and minute hands move smoothly (without touching each other or touching the surface of the dial or inside of the glass).</td>
</tr>
<tr>
<td></td>
<td>Hands installation.</td>
<td>Make sure that the date changes when the hour and minute hands pass around midnight.</td>
</tr>
</tbody>
</table>

Calendar mechanism - correcting the date.

Power reserve indicator function.

Setting mechanism - hour and minute hand setting.

Hand winding function.

Second hand stop function.

Turning the crown clockwise at the 0 click.

Setting mechanism switching the function of the time setting.

Hands installation.

Calendar mechanism - date change.
Water resistance test

Check the water resistance according to the designated specification of the watch.

<table>
<thead>
<tr>
<th>Marking on the case back</th>
<th>Test method</th>
<th>Applied pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER RESISTANT (WATER RESIST)</td>
<td>Air leak test</td>
<td>3 BAR</td>
</tr>
<tr>
<td>WATER RESIST 5BAR</td>
<td>Water pressure test</td>
<td>5 BAR</td>
</tr>
<tr>
<td>WATER RESIST 10BAR</td>
<td></td>
<td>10 BAR</td>
</tr>
<tr>
<td>WATER RESIST 15BAR</td>
<td>Condensation test</td>
<td>15 BAR</td>
</tr>
<tr>
<td>WATER RESIST 20BAR</td>
<td></td>
<td>20 BAR</td>
</tr>
<tr>
<td>SCUBA DIVER’S (AIR DIVER’S) 150 m</td>
<td>Condensation test</td>
<td>18.75 BAR = 150 (m) times 0.125</td>
</tr>
<tr>
<td>SCUBA DIVER’S (AIR DIVER’S) 200 m</td>
<td></td>
<td>25 BAR = 200 (m) times 0.125</td>
</tr>
<tr>
<td>He-GAS DIVER’S 300 m</td>
<td>Water pressure test</td>
<td>37.5 BAR = 300 (m) times 0.125</td>
</tr>
<tr>
<td>He-GAS DIVER’S 600 m</td>
<td></td>
<td>75 BAR = 600 (m) times 0.125</td>
</tr>
<tr>
<td>He-GAS DIVER’S 1000 m</td>
<td>Condensation test</td>
<td>125 BAR = 1000 (m) times 0.125</td>
</tr>
</tbody>
</table>
ACCURACY OF MECHANICAL WATCHES

- The accuracy of mechanical watches is indicated by the daily rates of one week or so.
- The accuracy of mechanical watches may not fall within the specified range of time accuracy because of loss/gain changes due to the conditions of use, such as the length of time during which the watch is worn on the wrist, arm movement, whether the mainspring is wound up fully or not, etc.
- The key components in mechanical watches are made of metals which expand or contract depending on temperatures due to metal properties. This exerts an effect on the accuracy of the watches. Mechanical watches tend to lose time at high temperatures while they tend to gain time at low temperatures.
- In order to improve accuracy, it is important to regularly supply energy to the balance that controls the speed of the gears. The driving force of the mainspring that powers mechanical watches varies between when it is fully wound and immediately before it is unwound. As the mainspring unwinds, the force weakens.
- Relatively steady accuracy can be obtained by wearing the watch on the wrist frequently for the self-winding type and winding up the mainspring fully everyday at a fixed time to move it regularly for the wind-up mechanical type.
- When affected by external strong magnetism, a mechanical watch may loss/gain time temporarily. The parts of the watch may become magnetized depending on the extent of the effect. In such a case, consult the retailer from whom the watch was purchased since the watch requires repair, including demagnetizing.

Duration time test

Check the Power reserve of the watch after the mainspring is fully wound up and leave it on natural condition with the dial-up position. Make sure that the watch runs more than 45 hours until it stops.